Những câu hỏi liên quan
Ác Quỷ Bóng Đêm
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 6:52

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

Bình luận (0)
nub
Xem chi tiết
tth_new
31 tháng 5 2020 lúc 18:37

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)

Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:

Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:

\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)

Đây là điều hiển nhiên.

Bình luận (0)
 Khách vãng lai đã xóa
Trần Anh
Xem chi tiết
Lê Chí Cường
23 tháng 4 2016 lúc 22:40

Đặt \(A=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

Áp dụng bất đẳng thức cô-si, ta có:

\(a^2+b^2\ge2.\sqrt{a^2.b^2}=>a^2+b^2\ge2ab\)

\(b^2+1\ge2.\sqrt{b^2.1}=>b^2+1\ge2b\)

=>\(a^2+b^2+b^2+1\ge2ab+2b\)

=>\(a^2+2b^2+1+2\ge2ab+2b+2\)

=>\(a^2+2b^2+3\ge2ab+2b+2\)

=>\(a^2+2b^2+3\ge2\left(ab+b+1\right)\)

=>\(\frac{1}{a^2+2b^2+3}\le\frac{1}{2.\left(ab+b+1\right)}\)

Chứng minh tương tự, ta có:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2.\left(bc+c+1\right)}\)

\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ca+a+1\right)}\)

=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ab+b+1\right)}+\frac{1}{2.\left(bc+c+1\right)}+\frac{1}{2.\left(ca+a+1\right)}\)

=>\(A\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ca+a+1}\)

=>\(A\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca.\left(ab+b+1\right)}+\frac{a}{a.\left(bc+c+1\right)}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{abc.c+abc+ca}+\frac{a}{abc+ca+a}+\frac{1}{ca+a+1}\right)\)

Vì abc=1(theo giả thiết)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{c+1+ca}+\frac{a}{1+ca+a}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca+a+1}+\frac{a}{ca+a+1}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\frac{ca+a+1}{ca+a+1}\)

=>\(A\le\frac{1}{2}.1\)

=>\(A\le\frac{1}{2}\)

=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

=>ĐPCM

Bình luận (0)
Lê Chí Cường
23 tháng 4 2016 lúc 21:00

vâng ạ 

Bình luận (0)
Phước Nguyễn
23 tháng 4 2016 lúc 21:52

Bài đây mình đã giải trong câu hỏi tương tự ấy! Bạn vào xem nhé! Tách lần lượt các hạng tử ở các mẫu của vế trái BPT để quy về dạng có thể sử dụng BĐT AM - GM cho các số không âm. Cứ thế là đường ta ta đi.... Kakaka. Đặt biến phụ chẳng hạn, đây là đặc trưng của cách thứ hai. Cách thứ ba thì đang thử nghiệm thử có an toàn không đã. 

Bình luận (0)
Ác Quỷ Bóng Đêm
Xem chi tiết
Phùng Khánh Linh
27 tháng 7 2016 lúc 10:31

Chả biết

Bình luận (0)
Hoàng Bảo Trân
Xem chi tiết
Pham Van Hung
4 tháng 11 2018 lúc 10:00

     \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc=0\)

\(\Rightarrow ab^2+ac^2+bc^2+ba^2+c\left(a+b\right)^2=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)

\(\Rightarrow\left(a+b\right)\left(ab+c^2+ca+cb\right)=0\)

\(\Rightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Từ đó a = -b hoặc b = -c hoặc c = -a

Nếu a = -b mà \(a^3+b^3+c^3=1\Rightarrow\left(-b\right)^3+b^3+c^3=1\Rightarrow c^3=1\Rightarrow c=1\)

Khi đó: \(A=\frac{1}{\left(-b\right)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{1^{2017}}=0+1=1\)

Tương tự với các trường hợp b = -c và a = -c, ta tính được A = 1

Bình luận (0)
Nguyễn Thành Hiệp
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 21:18

Đề đúng : Cho a,b,c > 0 và \(a+b+c\le1\)

CMR : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)

Đặt \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)

Áp dụng bđt Bunhiacopxki , ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(\sqrt{\frac{1}{x}.x}+\sqrt{\frac{1}{y}.y}+\sqrt{\frac{1}{z}.z}\right)^2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\) 

 

Bình luận (6)
Lightning Farron
17 tháng 8 2016 lúc 21:38

Ta thấy: \(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)

Sử dụng Cosi 3 số ta suy ra

\(VT\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)

\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\) (Đpcm)

Đẳng thức xảy ra khi\(\begin{cases}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
Trần Hà Phương
17 tháng 8 2016 lúc 21:04

mk tìm  đc gtln

Đặt a+b=x b+c=y c+a=z

BDT cần cm ⇔(x+y)(y+z)(z+x)xyz (vì a+b+c=1)

Đến đây cô si bình thường ra min bằng 8

Bình luận (5)
Mai Hiệp Đức
Xem chi tiết
Hoàng Bảo Trân
Xem chi tiết
Girl
3 tháng 11 2018 lúc 19:34

Cái thứ 2 là b. (a^2+c^2) đúng ko bạn

Bình luận (0)
Hoàng Bảo Trân
3 tháng 11 2018 lúc 20:58

đúng rồi nha

Bình luận (0)
Hoàng Bảo Trân
3 tháng 11 2018 lúc 20:58

Bạn giúp mình với

Bình luận (0)